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It is shown that hydrodynamic interactions between non-Brownian, non-spherical, 
sedimenting particles give rise to an increase in the number of neighbouring particles 
in the vicinity of any given particle. This result suggests that the suspension is 
unstable to particle density fluctuations even in the absence of inertia; a linear 
stability analysis confirms this inference. It is argued that the instability will lead to 
convection on a lengthscale (nZ)-i, where I is a characteristic particle length and n is 
the particle number density. Sedimenting suspensions of spherical particles are 
shown to be stable in the absence of inertial effects. 

1. Introduction 
The mean sedimentation velocity in a suspension of non-spherical particles, such 

as the spheroidal particles treated in this paper, depends strongly on the suspension 
structure. The sedimentation velocity u" of a non-spherical particle depends on its 
orientation, varying by an O(u") amount as its orientation changes. Each particle 
rotates under the influence of the fluid velocity fluctuations resulting from the 
settling of the surrounding particles. The particle orientation distribution is 
determined by these interparticle hydrodynamic interactions, unless the particles are 
weighted such that they seek a preferred orientation. 

Recently, the effects of hydrodynamic interactions on the orientation of freely 
suspended particles flowing through fixed beds have been analysed by Shaqfeh & 
Koch (1988). In that instance, it was demonstrated that the particle orientations 
were determined primarily by long-range interactions. Each long-range interaction 
between a freely suspended particle and a fixed particle causes a small change in 
orientation. As a result the bed-average orientation distribution evolves in a diffusive 
manner, satisfying a local orientational advection-diffusion equation. The orienta- 
tional 'advection ' results from a drift velocity associated with rotational 
dilatation. The orientational diffusivity created by interactions between the fixed 
and freely suspended particles was demonstrated to be an average rotational velocity 
correlation function relating the rotational velocity of a freely suspended particle at 
a point in the bed, to its rotation rate a t  all previous points along a particle path. 
Both the 'drift ' velocity and the diffusivity were calculated explicitly for a wide class 
of axisymmetric particles and analytic solutions were obtained for the bed average 
orientation distribution function at  steady state. 

It would be desirable to apply a similar analysis to calculate the orientation 
distribution in a sedimenting suspension of non-spherical particles. It will be shown, 
however, that such a straightforward application does not exist, primarily because 
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of the long-range nature of the hydrodynamic interparticle interactions. If the 
velocity disturbance caused by a sedimenting spheroid is approximated by a 
Stokeslet, the rotation rate of one particle due to a second decays like rP2 as the radial 
interparticle separation r goes to  infinity. Therefore, the integral along a trajectory 
of a particle’s past rotations resulting from its interactions with a second particle 
decays like r-’ as r + co. As a result the deviation of the joint probability density for 
the position and orientation of the two particles from its asymptotic value also 
decays like r-’. It follows that if one attempts to evaluate the effective rotatory 
diffusivity in a random suspension by summing the contribution of each ‘second’ 
particle to the integral along a trajectory of the rotation rate correlation function one 
obtains a conditionally convergent integral as r -+ CO. It is not possible, then, to 
evaluate the orientation distribution or the mean sedimentation velocity in a 
suspension of non-spherical particles, unless some account is taken of the effect of 
non-uniformities in the particle distribution on the fluid velocity perturbations. 
Similar divergence problems have been shown to arise in an atltempt to calculate the 
variance of the sedimentation velocity in a sedimenting suspension of spheres of 
uniform probability (Caflisch & Luke 1985).  

If the non-uniformity of the particle distribution that developed as a result of 
particle interactions consisted of a net deficit of particles in the neighbourhood of 
each particle, one might expect the velocity fluctuations in the dispersion to be less 
than those in a uniform dispersion. However, i t  will be shown in $ 2  that,, in the case 
of sedimenting spheroids, hydrodynamic interactions lead to a net excess of particles 
in the vicinity of each particle. In  $ 3 ,  we show that the tendency for long-range 
density increases (or ‘clumping ’) in sedimenting suspension of spheroids causes an 
instability and the suspension ceases to  be homogeneous (on scales of O((nZ)-i) where 
1 is a characteristic particle length and n is the particle number density). The 
possibility of such an instability occurring in suspensions of spherical particles is 
investigated in $ 4, where we demonstrate that, including pairwise particle 
interactions, such a suspension is neutrally stable to density perturbations (in the 
absence of damping forces such as Brownian motion). 

2. The effect of two spheroid interactions on the pair probability 
In this section we consider the dynamic interactions between two sedimenting 

spheroidal particles. We are particularly interested in determining whether these 
interactions tend to create an increase or deficit in the number density of 
neighbouring particles. 

In  a pure fluid, spheroidal particles will sediment a t  a velocity UT, which depends 
on the orientation, p , ,  of their axes of rotational symmetry. For convenience, we have 
adopted Einstein vector notation with S,, indicating the unit vector in the direction 
of gravity. In  general, U: is given by (Overbeck 1876; Happel & Brenner 1965) 

uy = s j 3 ( P o a i j + P , ~ i ~ j ) j  (2.la) 

where, for prolate spheroids, y > 1, 

(2.lb) 
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and, for oblate spheroids, y < 1, 

(2.ld) 

Here, 1 is the semiaxis of the spheroid along the axis of rotational symmetry, and y 
is the aspect ratio, l la ,  where a is the semiaxis perpendicular to the axis of rotational 
symmetry. The constant Po is always positive for particles heavier than the 
surrounding fluid. On the other hand, for such heavy particles, p1 is positive for 
prolate spheroids, negative for oblate spheroids, and zero for spheres. For our 
purposes, the most important characteristics of the sedimentation velocity as given 
by (2.1) are: (i) a spheroid falls faster when its 'thin' side is pointing in the direction 
of gravity; and (ii) the component of U: perpendicular to gravity is non-zero when 
the spheroid's orientation, pi, is a t  an oblique angle to gravity. Note that whereas 
two identical spherical particles do not move relative to one another, two non- 
spherical particles do sediment at different speeds and in general their relative speed 
is O(Us).  Thus, typically one spheroid will sediment through the region surrounding 
a second spheroid thereby changing the orientations of both particles. Kim (1985) 
showed that pairs of spheroids may have closed trajectories, however these closed 
trajectories only occur for particles that are separated by a distance comparable to 
the length 1. We are interested in the long-range structure of the pair probability, 
because, in a dilute suspension, the long-range interactions control the particle 
dynamics. Thus, we consider only those trajectories in which the particles remain 
separated by a distance large compared to their length 1 ; Kim (1985) has shown that 
such trajectories are not closed. 

Neglecting Brownian motion and the effects of interactions between three or more 
particles, the joint probability density P(r,pB ; O,pA) for finding two particles a t  a 
relative position r with orientations pA and pB satisfies the conservation equation : 

where U' and r are the velocity and position of particle B relative to  particle A, PA 
andpB are the time rates of change of the particle orientations, and V p ~  and V p ~  are 
the Nab16 operators with derivatives taken with respect topA andpB. At sufficiently 
large separations the orientations and positions of the particles are uncorrelated, so 
P - n2 Y@*) !P(pB) as r -+ 00, where Y is the average orientation distribution in the 
suspension. 

As we are only interested in the interactions between well-separated particles, i.e. 
rl-' % 1, we may neglect the direct effects of hydrodynamic interactions on the 
relative velocity, which decay like 14r-4. The relative velocity, U i ,  is then 
approximately the difference between the two particles' settling velocities in a pure 
Newtonian fluid, and from (2.1), we, obtain 

U: = P ~ ( P ?  P , B - P ~  P:) Jj,. (2.3) 

Note that, in fact, we have only neglected the direct influence of interactions on the 
relative velocity, and each particle will still create a velocity disturbance in the fluid 
which will cause the other to rotate and will in turn affect their relative velocity. The 



524 D. L. Koch and E .  S. G. Shaqfeh 

large interparticle separation enables us to make three approximations in 
determining the particles’ rotation rates : (i) hydrodynamic reflections may be 
neglected as their effects will be of higher order in W’; (ii) the velocity disturbance 
that one particle causes in the vicinity of the second may be approximated as that 
due to a point force; and (iii) this velocity disturbance may be treated as linear 
shearing motion on lengths comparable with that of the second particle. Using these 
approximations, tthe rotation rates are given by the well-known relations (Bretherton 

( 2 . 4 ~ )  

(2.4b) 

where E = + ( V u + V u f ) ,  W=#7u+-Vu), (2.4c, d )  

u is the velocity field a t  a position r due to a point force of magnitude f = ApV,g 
located a t  the origin. Here, A p  is the difference between the densities of the particles 
and fluid and V, is the particle volume. The minus sign in (2.4b) arises because the 
position of particle A relative to B is - r  and the velocity gradient due to a point 
force is an odd function of position. When the particle separation is in the range 
16 r 4 (nZ)-i, the velocity disturbance of each particle may be approximated as 
the velocity due to a Stokeslet, which satisfies (Xaffman 1973) : 

-pV2u+Vp = f d ( r ) ,  ( 2 . 5 ~ )  

v-u = 0. (2.5b) 

The restriction to separations less than (nl)-a arises because for larger separations one 
must take into account the effect of changes in the number of neighbouring particles 
on the velocity disturbance. 

We may obtain the joint probability density P(r ,pB;O, .pA)  from (2.2) with the 
particles’ relative velocity given by (2.3) and their rotation rates by (2.4). The 
rotation rates (2.4) are proportional to the velocity gradient which decays like 12r+ 
as r +  m. The total change in a particle’s orientation during an interaction involves 
an integral along its trajectory of the particle’s rotation rate, and thus, this change 
decays like Zr-l. Therefore, for rl-l 9 1, the changes in the particles’ oricntations are 
small, so the difference between the joint probability density and its asymptotic 
value, i.e. P = P-n2Y(pA) Y(pB) is small like Zr-l. Neglecting terms smaller than 
12r-‘ as r --f 00, (2.2) becomes a t  steady state : 

u’. VP’ = - V p A  * [pAn2 Y(pA) y(pB)] - VpB [liBn2 y@”) YbB)]. (2.6) 

Equation (2.6) may be solved upon Fourier transformation to give 

[ V p ~ -  @n2Y(pA) Y(pB)) + Vp~*@Bn2Y(pA) Y(p”))]. (2.7) 
1 

27cik- U‘ 
p‘ = - 

The transformsjA and jB are related to g and W by (2.4a, b ) .  and Ware just the 
transforms of the symmetric and antisymmetric parts of the gradient of the velocity 
disturbance due to a particle and the latter is given by the solution in Fourier space 
of (2.5), i.e 
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Equation (2.7) simply represents the transform of the integral of the right-hand side 
of (2.6) along a particle trajectory. 

The joint probability density for finding a particle of any orientation a t  r and a 
particle of orientation pA at the origin is: 

where the pair probability g is the probability density for finding a particle of any 
orientation located a t  r, when a particle of specified orientation pA is located a t  0. 

Thus, the extra particle density p, the difference between the pair probability g and 
number density n, is given by 

1 r  

(2.10) 

The excess particle density p (like P') decays like lr-l. Because of this slow decay, 
the total excess (or deficit) of particles within a radial distance R of a given particle 
obtained by integrating p over this volume is 0(1), when R z O((nZ)-;). On this 
lengthscale one can no longer neglect the effects of the change in the particle density 
on the velocity disturbance. 

We wish to determine the sign of the net change in the number of particles within 
a sphere of radius R of a given particle, where 1 4 r 4 (nZ)-'. This net change, which 
we shall call H ,  is given by 

(2.1 1)  

We shall determine the sign of H for a spherical volume of radius R, where 
1 + R + (nl)-i .  On a lengthscale R the effect of the particle density change on the 
velocity disturbance may be neglected. On the lengthscale (nZ)-f, the coupling between 
the particle density and the velocity fluctuations becomes significant. If H is positive, 
one may expect the homogeneous suspension to be unstable to  particle density 
perturbations on this lengthscale. 

Equation (2.11) can be written in terms of a volume integral over all space using 
(2.10) and the 'ball' function II ( r / 2 R )  of Bracewell (1978), to give 

(2.12) 

where the 'ball' function II ( r / = )  is equal to 1 for r < R and is equal to 0 otherwise. 
Applying the convolution theorem, (2.12) becomes 

H = -idpB/dkfi  1 ( -k)p(k) ,  

n W A )  
(2.13) 

where the Fourier transform of the 'ball' function is (Bracewell 1978) given by 

sin (27rkR) - 2nkR cos (2nkR) 
2X2k3~3 

f I ( k )  = (2.14) 
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For simplicity we shall consider an isotropic bulk orientation distribution 
Y = (47c)-'. Substituting (2.7) and (2.14) into (2.13), we obtain 

1 3nf y2-1  sin (27ckR) -27ckR cos (27ckR) 
87c4k5R3 H = -(-)/dp"/dk[ 87cp y2 + 1 

X ypF -pfp']  K i ( S j k  - K j  K k )  8 k 3 ,  (2.15) 
K1 uz 

where K~ = k i / k ,  and we have used (2.4) for the particle rotation rates and (2.8) for 
the velocity disturbance. Recall that the relative velocity U' is given by (2.3). 
Performing the integration in k and rearranging, (2.15) becomes 

37cfR2 7'-1 
H = - (-) jdp"  [sin 0 dO dQ, 

327c2p y2 + 1 

where 0 and Q, are the angular variables in a spherical coordinate system in Fourier 
space. The first term in the integrand in (2.16) is imply l/pl and may be integrated 
easily in 0 and SP to give 47c/P1. The second term in (2.16) may be integrated, using 
the relation 

to give 
H = -(-)[$+& 3n fR2 y2  - 1 jdpB 4PPl Y 2 + 1  U" 

The integral in (2.17) contains a factor ( U ; K ~ ) - ~ ,  and thus appears superficially to 
be conditionally convergent near points where U ;  K~ = 0. However, the Fourier 
transform ( U ; K ~ ) - ~  is a generalized function and its integral is defined to be the 
Cauchy principal value (Lighthill 1980). Equation (2.18) can be derived without the 
requirement of integrating generalized functions if the pair probability is evaluated 
by using the method of characteristics in real space. The real-space analysis is 
available by request from the authors. 

From (2.18) it is clear that H is positive. The first term in the square brackets is 
positive and the integrand of the second term is non-negative for all values ofpA and 
pB. This indicates that two-particle interactions lead to an increase in the 
neighbouring particles near a given particle. Note that this result is independent of 
whether the spheroids are prolate or oblate, the factor (y2- l)/[(y2 + l ) P 1 ]  being 
positive for both prolate and oblate spheroids. 

The integrand of the second term in the expression (2.18) for the excess number of 
neighbouring particles, H ,  becomes singular when the magnitude of the relative 
velocity U' goes to zero. The relative velocity may go to zero in two cases: ( i )  when 
the two orientations are identical, pf  = p:, or (ii) when both orientations are 
perpendicular to gravity, p t  = p: = 0. Consider first case (i) and denote the angle 
between pB and pA as @BA. The denominator of the integrand is then O( ( OBA)4) while 
the numerator is O( ( as O,, + 0. Thus we obtain an area integral over the unit 
sphere inpB of a quantity that is singular like and so we do not obtain a large 
contribution to H from case (i). On the other hand case (ii) does yield a large O[(p;)-l] 
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FIGURE 1. The effect of a point-force velocity disturbance on the orientation of surrounding 
particles is shown schematically. The streamlines corresponding to the symmetric part of the local, 
linear shear field near each neighbouring particle are illustrated. The neighbouring particles are 
drawn in the most favoured orientation - the orientation at  which particle density is being 
increased most rapidly by the point-force velocity disturbance. 

contribution to the excess of particles neighbouring a particle that is oriented nearly 
perpendicular to gravity, i.e. p t  4 1.  In the limit p;+O one obtains unbounded 
contributions to H from other horizontally oriented particles in the present 
approximation. In this limit the approximation that the change in particle 
orientation in a single ' collision ' is small breaks down and P is no longer small. 
However, none of these considerations alter the result that H is positive indicating 
an excess of near neighbours. 

Figure 1 illustrates how a net increase in the number of neighbouring particles is 
created. With the aforementioned approximations, any given particle creates a point 
force velocity disturbance. The neighbouring particles tend to align with their 'thin ' 
sides parallel to the direction of the extensional component of the fluid motion caused 
by the point force. The principal axis of extension is always parallel to the radial 
vector, but above the point force the flow converges while below it diverges. Thus, 
the particles above the point force tend to align with their 'thin' sides parallel to 
gravity and those below tend to align perpendicular to gravity. It follows that the 
particles above a given particle tend to fall faster than those below, leading to a net 
tendency for particles to accumulate in the vicinity of any particular particle. 
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The tendency for sedimenting spheroids to aggregate during the sedimentation 
process strongly suggests that a homogeneous sedimenting suspension may be 
unstable to particle number density fluctuations. Any positive density fluctuation 
creates a velocity disturbance which may, through its effect on the orientation of 
neighbouring spheroids, be expected to enhance the density fluctuation. The 
stability of a homogeneous, sedimenting suspension of spheroids is investigated more 
carefully in the following section. 

3. Stability of a homogeneous suspension of spheroidal particles 
In  this section we consider the stability of a homogeneous suspension of sedimenting 

spheroids to small amplitude fluctuations in particle number density. We 
demonstrated in the preceding section that two particle interactions tend on average 
to cause particles to clump together, suggesting that the homogeneous suspension 
may be unstable. 

A t  present, we consider a suspension that is sufficiently dilute so that particle 
interactions may be neglected in comparison with the interaction of the particle with 
a bulk disturbance. Thus, we consider the evolution of the bulk particle density or 
concentration c ( x , p ) ,  which satisfies the particle conservation equation : 

ac 
- + V , . ~ c ) + V . ( U c )  = 0, 
at 

where U ( x )  is the velocity of a particle at position x .  In  the dilute limit U is a sum 
of the average fluid velocity ( u )  caused by all of the particles in the suspension and 
the sedimentation velocity (2.1) in a quiescent, pure fluid. Here ( ) indicates an 
ensemble average over all the possible configurations of the suspension. The particle 
rotation rate p is given by (2 .4a,  c ,  d )  with the fluid velocity now being the bulk 
average ( u ) .  

To calculate the average fluid velocity field, we shall use a point-particle 
approximation. This approximation is valid when the wavelength k-l of the 
disturbance introduced in (3.5) is much larger than the particle size 1, so that most 
of the particles causing the velocity disturbance at position x are a large distance 
away from x. The fluid velocity field in the point-particle approximation satisfies 
(Saffman 1973) : 

N 

-pV2u+Vp* = C f d ( x - R , ) ,  (3 .2a)  

v * u  = 0, (3.26) 

where Ri is the position of the i th particle, p* is the dynamic pressure, and 
f = V,Apg is the force of gravity acting on each particle. In the point-particle 
approximation, Batchelor's (1972) renormalization is equivalent to adjusting the 
reduced pressure p = p * - n f z  to reflect the increase in the average density of the 
suspension due to the presence of the particles. I n  this section n will be used to denote 
the volume averaged particle number density, which may differ from the local 
number density, S dp c ,  owing to the particle density perturbations. Substituting the 
adjusted reduced pressure into (3 .2a)  yields : 

i=l 

-pV2u+Vp = f C S(x-Ri ) -n  " i=l 
13.3) 
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The equations for the bulk fluid average velocity and pressure fields are obtained 
by taking the unconditional ensemble average of (3 .3)  and (3 .2b)  to give 

- p V 2 ( u ) + V ( p )  = f - n +  dpc(x,p) , V . ( u )  = 0. (3 .4a,  6 )  

The base state for the stability analysis is a homogeneous suspension with a 
particle orientation distribution Y@), i.e. c(x,p) = n!P@). This spatially homo- 
geneous particle density does not drive any bulk fluid motion (cf. equation (3 .4) ,  so 
( u )  = 0. Furthermore, since the bulk velocity is zero, the mean particle rotation rate 
p is zero and the particle conservation equation (3 .1)  is satisfied for any orientation 
distribution. Note that in the present approximation we have not included the effects 
of particle interactions on the particle orientation. 

We now consider the imposition of a normal-mode perturbation in number density 
of small amplitude c on the spatially homogeneous state, i.e. 

[ S  1 

c (x ,p ,  t )  = n Y @ )  +cnc’(k,p, w )  eiot eik.X. (3.5) 

Thus, the number density perturbations are plane waves of wavenumber k .  The 
suspension will be unstable and certain types of number density perturbations will 
grow, if there exists a perturbation for which the frequency w = o,+iw, has a 
negative imaginary part wI. 

The small perturbation in particle number density drives a small velocity field 

( u )  = e iwt  eik.x ( 3 . 6 ~ )  

Substituting ( 3 . 6 ~ )  into (3 .4)  and solving for the velocity u‘, using the continuity 
condition to eliminate the pressure, we obtain 

u’(k,w) = dp c’. (3 .6b)  

Since we are completely neglecting inertial effects the velocity field at any point in 
time is determined solely by the disturbance in particle density a t  that particular 
time. The small fluid velocity perturbation gives rise to a small rotary motion of the 
particles, which is obtained by substituting (3 .6)  into (2.4a, c ,  d )  to give 

> (3 .7a)  pi  = e iwt  eik.x 

where (3 .7b)  

In writing (3 .7b)  we have used the stipulation that the wavelength of the 
perturbation is much larger than the particle length 1 to approximate the particles’ 
rotation rate as that arising from a local, linear shear field. 

Substituting (3 .5) ,  (3 .6a) ,  3 . 7 ~ )  and (2.1) into the particle conservation equation 
(3.1), we obtain 

cneiwt e ik.x [iwc’ + Us - ikc‘ + V,(P’nY)] = - s2n2[V.  (eZiwt e2ik.x u’c’) 

+ V , -  (eZiwt e2ik.xj’c’)]. (3 .8)  

In writing (3 .8)  we have used the continuity equation (3 .4b) .  The linear stability 
problem is obtained by neglecting the terms of order s2 that appear on the right-hand 
side of (3 .8) .  Thus, the stability problems involves a coupling between the bulk 
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particle density and fluid velocity fluctuations. The particle density fluctuations 
drive a bulk fluid motion, which in turn causes the particles to rotate affecting their 
sedimentation velocity and number density. This coupling is similar, but not 
identical, to the coupling investigated in 8 2 between the velocity disturbance caused 
by a single sedimenting particle and the pair probability. 

We shall consider the base state in which the suspension is well mixed, i.e. the 
particle orientation distribution is isotropic, Y = (4n)-l. Substituting (3.6 b) and 
(3.7b) into (3.8) and neglecting terms of O(c2), we obtain the following integral 
equation for the particle density perturbation : 

In  deriving (3.8) and (3.9) we have neglected any Brownian motion of the particles. 
Thus, there is no mechanism tending to dissipate particle density fluctuations, and 
we can only expect to obtain predictions of instability (wI < 0) or neutral stability 
( w I  = 0) of the system considered. In  this way the present analysis is similar to the 
inviscid stability analysis of plane shear waves (Drazin & Reed 1981), and as in that 
case we shall obtain a finite number (two) of discrete eigenvalues plus a continuous 
spectrum. If w has a non-zero imaginary part or if w is real and w does not equal 
-k. U s ( p )  for any orientationp, then we can divide (3.9) by (iw+ik- U s )  to obtain 

c’ = 47cpk2(w+ 3n k. U s )  r s ) p i p ,  y + 1 ki(cYjk-p)fk[dpd. (3.10) 

Using a normalization condition, J dp c’ = B(k) ,  for the particle concentration 
perturbation (3.10) reduces to 

(3.1 1 )  

Here B(k) is an arbitrary function of k. The dispersion relation determining the 
discrete eigenvalues w is obtained by substituting (3.11) into (3.9) to give 

(3.12) 
3n ( ~ ) P i P j k i ~ j k - ~ ) f k  y2- 1 k .  Ic = O *  

1 -~p4rcpk2(w+k.  U s )  y + 1 

When w is real and w = - k.  Us@,)  for some orientationp,, we cannot divide (3.9) 
by (iw + ik- U s )  as this would mean dividing by zero for p = p, .  However, in this case 
(3.9) has a solution in terms of generalized functions (Lighthill 1980) : 

C’ = A6@ -po) + 3nB r+)PiPj ‘ i p j k - F ) f k >  ‘j kk (3.13a) 
4npk2(w+k. Us)  + 1 

for = -k* Us@,) ,  (3.13b) 

where A(k) is to  be determined by the normalization condition J dp c’ = B. Note that 
the second term on the right-hand side of (3.13a) is a generalized function and its 
integral with respect t o p  is the same as the Cauchy principal value. The continuous 
spectrum of eigenvalues (3.13b) are all real. Thus, the solutions (3.13) are travelling 
waves with wave speeds equal to the sedimentation velocity Us(p,)  for a particle of 
orientation p,. These travelling waves do not grow or decay with time, so the 
stability of the suspension is controlled by the discrete eigenvalues. 
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Returning our attention to the discrete eigenvalues, we define 

k , / k  = cos 0, pi k,lk = cos Of ,  

p ,  = cos 0 cos 0' +sin 0 sin 0' cos @. and 

531 

For the present case, in which w + -k. U @ )  for allp,  the integral with respect to @ 
in (3 .12)  may be evaluated by contour integration over the unit circle in the complex 
plane to obtain 

3nf r2 - - ') Jsin 0' d@' 
2pk2P, y2 + 1 

1 
x 1- P, k sin 0 sin 0' cos 0' [ [I-(. +Po k cos 0 +PI k cos 0 cos2 0' 

Although y2- 1 and PI are both negative for oblate spheroids, the factor multiplying 
the integral in (3.14) is always positive. Thus, (3 .14)  can be written in terms of 
dimensionless variables as 

where 

and 

P o  Po*=-, PI 
[ = cos 0'. 

(3 .15)  

(3 .16a)  

(3.16b) 

( 3 . 1 6 ~ )  

( 3 . 1 6 d )  

Note that there is only one lengthscale and one timescale in this problem. The 
lengthscale is (nl)-i - the len th a t  which buoyancy forces balance viscous forces. The 
timescale is the time (nl)-zA' required for a particle to sediment a distance 
comparable with the characteristic lengthscale (nZ)-b. For slender bodies, y B 1 ,  the 
characteristic lengthscale is (nZ)-i [In y];,  however, it should be noted in this case that 
the diluteness approximations used in the preceding analysis are valid only if 
n13 e 1. The observation that the lengthscale of interest (nZ)-i is much greater than the 
particle length 1 provides an a posterior justification of the use of (3.7 b) to obtain the 
rotation rate p .  

The maximum value that the integral in (3 .14)  can attain is 2 .  This sets an upper 
limit, k* = 1 ,  on the wavenumber for which discrete eigenfunctions may exist. This 
maximum wavenumber (minimum wavelength) is achieved in the limit w* + 0, when 
the waves are horizontal, i.e. 0 = in. 

The behaviour of the eigenvalue w* in the limit of small wavenumber (large 
wavelength) may be obtained by expanding (3 .15)  in small k*/w* and solving to give 

5 

Isin 01 
(15): 

w* x *i-- (P,*+$)k*co~O+O(k*~) (k* 4 1 ) .  (3 .17)  
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FIGURE 2. The imaginary part of the non-dimensional eigenvalue, w;, is plotted as a function of 
the non-dimensional wavenumber k* for normal mode particle density perturbations with the 
wavenumber perpendicular to the  direction of gravity i.e. k: = 0. 

From (3.17) it can be seen that there are growing solutions in the long wavelength 
limit, k* --f 0. The fastest growing waves are those with horizontal wavenumbers, i.e. 
0 = in, while the growth rate for waves with vertical wavenumbers, 0 = 0, is zero. 
The latter result is not surprising, because purely vertical stratification does not 
drive any bulk fluid motion. The O(k*) term in (3.17) indicates that the waves travel 
in the direction of gravity with a non-dimensional velocity (,@ +$)ai,.  In  dimensional 
variables the wave speed is (Po + &) Si,. The waves travel because of the settling of 
the particles. 

The discrete eigenvalues for waves with horizontal wavenumbers are purely 
imaginary, w* = iw: for all wavenumbers k*, where w: is .given by 

(3.18) 

Equation (3.18) was solved using Romberg integration with relative errors of O( 
and secant iteration on w: again with O( lop5) errors. In  figure 2 we have plotted the 
growth rate wT of the disturbances versus the wavenumber. The growth rate 
increases monotonically with decreasing wavenumber from zero growth rate a t  the 
maximum wavenumber k* = 1 to a growth rate of (15)-; a t  k* = 0. 

The result that the growth rate reaches a finite constant value as the wavenumber 
goes to zero may be rationalized in the following manner. The amplitude of the 
velocity field driven by a spatial particle density perturbation of fixed amplitude EB 
and wavenumber k* increases like Bk*-2 as k*+O (cf. (3.6)). The shear rate and 
particle rotation rate grow like Bk*-l (cf. (3.7)). This drives a particle density 
disturbance c'(x,p)  (see (3.11)) in real and orientation space which is O(Bk*-l) ,  
despite the fact that the purely spatial particle density fluctuation Sdpc' is 
normalized to B. In  order that the orientation space particle density disturbance 
contributes to a growth in the spatial particle density disturbance the particles must 
translate half a wavelength (an O(k*-l)  distance) from a region of low to a region of 
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high particle density. Thus, the growth rate in the spatial particle density disturbance 
is O( 1)  as k* + 0. 

In the preceding linear stability analysis we found that the normal mode density 
perturbations with the maximum growth rate are those of arbitrarily large 
wavelength. This might be taken as an indication that particle density disturbances 
and velocity fluctuations which are the size of the settling vessel may be expected to 
arise in suspensions of non-spherical sedimenting particles. However, we do not 
believe that such long wavelength fluctuations will in fact develop. 

The linear stability analysis applies only to perturbations of sufficiently small 
amplitude such that the particle orientation distribution is not gpeatly affected by 
the velocity disturbance. Thus, we require that the magnitude of enc’(x,p) must be 
much smaller than the base state particle density n!P@). From (3.11) it can be seen 
that the magnitude of c‘ behaves like Bk*-l as k*-+O. As a result, the small- 
amplitude restriction for the validity of the linear stability analysis is EB << k*, where 
B is the amplitude of the disturbance. If this restriction is not satisfied then the 
nonlinear terms on the right-hand side of (3.8) cannot be neglected. The small- 
amplitude restriction is more stringent for perturbations of longer wavelengths, 
because as discussed previously longer wavelength spatial particle density fluctua- 
tions are more effective in driving a shear flow. Specifically, an O(&) real-space 
particle density disturbance of wavenumber k* drives a shear rate, particle rotation 
rate, and orientation-space particle density disturbance which are each O(&k*-’). 

The mechanism of the instability predicted here is illustrated in figure 3. A 
horizontal particle density wave induces a shear wave in which fluid is moving 
downward (upward) in regions of high (low) particle density. Each particle rotates in 
the local shear field surrounding it. However, the particle rotation Pate is dilatational 
in particle orientation space, this dilatation resulting from the extensional component 
of the shear field. As a result, there is a net tendency for the particle density c ( x , p )  
to increase a t  particle orientations which are within the ‘extensional’ quadrant - the 
quadrant in which the projection of the particle orientation into the plane of shear 
is within an angle ax of the axis of extension for the extensional component of the 
shear field (see figure 3).  The horizontal component of the settling velocity Us@) of 
particles with orientations in the ‘extensional’ quadrant is in the direction of 
increased particle density. Thus, the net effect of the shear wave is to increase the 
proportion of the particles that are oriented in such a way as to cause them to 
translate toward the regions of increased particle density; this clearly leads to 
growth of the particle density perturbation. 

A different way of stating the small-amplitude restriction discussed above is that 
the change in orientation experienced by a particle as i t  translates through a 
wavelength of the disturbance must be small. If this condition is not satisfied, the 
particles will rotate in periodic orbits (Jeffery 1923) in the local shear flow. A particle 
undergoing steady rotation in a Jeffery orbit spends equal portions of its period in 
the ‘extensional ’ and ‘compressional ’ quadrants. Thus, the horizontal component of 
the time-averaged particle velocity will go to zero as eBk*-’ + co so that the particle 
experiences many periods of the Jeffery orbit in the time it takes to  transverse half 
a wavelength from a region of low density to one of high density. Thus, we conclude 
that the growth rates of perturbations whose amplitudes are large compared with 
their wavenumber, 1 $- eB > k*, decrease with decreasing wavenumber (increasing 
wavelength). However, our linear stability analysis indicates that the suspension is 
stable to wavenumbers k* >, 1. Therefore, we expect that ultimately finite-amplitude 
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‘ Extensional ’ ‘Compressional ’ 
quadrant 1 quadrant 

Low particle High particle 
density density 

FIQURE 3. Schematic illustration of  the  instability mechanism. A horizontal normal mode particle 
density perturbation drives a vertical shear flow. The streamlines o f  the  extensional component o f  
the  local, linear shear field are illustrated. The flow field tends t o  increase the particle density of 
orientations within the ‘extensional quadrant ’ - the quadrant consisting of orientations whose 
projection into the plane of shear is within an angle of $t of the extensional axis. A particle is drawn 
in the most favoured orientation. Particles with orientations in the extensional quadrant sediment 
with a horizontal component in the direction of increasing particle density, thus causing a growth 
of the particle density perturbation. 

density fluctuations with dimensionless wavenumber k* z O( 1) or, equivalently, 
dimensional wavelengths of order (nZ)-i will predominate. 

We have seen that suspensions of spheroidal particles are unstable to particle 
density perturbations with wavenumbers in the range 0 < k* < 1 .  The type of 
normal-mode perturbation with the maximum growth rate is apparently a wave of 
horizontal wavenumber and k* + 0. The growth rate of the instability decreases as 
y+ 1, i.e. as the particles become spherical. Note that when (y-  11 < q5 two particle 
interactions will have a larger effect on the sedimentation of velocity than does the 
particle orientation. Here, q5 is the particle volume fraction. The stability of 
suspensions of spherical particles is examined in $4. 

4. Stability analysis for suspensions of spheres 
In this section we consider the stability of a dilute, homogeneous, monidisperse 

suspension of spheres in the absence of inertial effects to small particle number 
density perturbations. In  $3, a sedimenting suspension of non-spherical axisymmetric 
particles with fore-aft symmetry was shown to be unstable to  such perturbations. 
The mechanism that led to  that instability involved a coupling between the particles’ 
setttling velocities, their orientations, and the fluid motion induced by the particle 
density perturbations. The fluid motion induced by a particle density perturbation 
caused the particles to rotate such that more particles were aligned with the 
extensional than the compressional axis of the local shear field. Because the velocity 
of the particles depends on their orientation, this change in particle orientation 
induced a net particle flux toward regions of high particle density, thus, leading to 
the instability. 

If one neglected particle interactions entirely in a suspension of spheres (as was 
done in the stability analysis for spheroids), there would be no coupling between the 
particles’ velocit,ies and their orientation, and thus no comparable mechanism of 
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instability. However, if we consider interactions between pairs of particles, a 
coupling similar to that treated in $ 3  for spheroids exists. A pair of particles settles 
relative to the surrounding fluid with a velocity which depends on the relative 
position of the particles. This relative position is, in turn, influenced by the velocity 
field created by the particle density perturbations. 

In many ways the stability analysis here will be similar to that in $3, however an 
important distinction between the orienting behaviours of a pair of spheres and a 
spheroid will lead to stability in the present study of suspensions of spheres, where 
we found a suspension of spheroids to be unstable in $3.  The essential difference in 
the physics of the two cases is discussed in detail a t  the conclusion of this section. A 
dilute suspension of slightly non-spherical particles may be stable like the suspensions 
of spheres treated here, or unstable like the suspension spheroid in $3,  depending on 
the relative magnitude of Iy2 - 11 and the volume fraction q5. If (y2 - 11 4 $, then the 
present analysis applies, whereas the analysis in $3  applies, when q5 < )y2- 1) .  

In the present instance, we are interested in the concentration or number density 
c2(x , r )  of pairs of particles located at  positions x-ar and x+$r. The pair 
concentration satisfies the conservation equation : 

ac2 -+V.(Uc2)+V,.(I'c2) at = 0, 

where V and V, are the Nab16 operators with derivatives taken with respect to x and 
r,  respectively, U is the velocity of the pair's centre of mass, and i is the velocity of 
the particle at  x + %r relative to the one at  x -kr. 

Note that in writing (4.1) we have neglected any possible Brownian or 
hydrodynamic diffusion of the particles. As a result, there is no dissipative 
mechanism, (4.1) will always have travelling wave solutions, and one can only expect 
to obtain neutral stability or instability from the present analysis. 

We shall consider pairs of particles that are sufficiently close together that the fluid 
velocity may be approximated by a linear shear flow on lengths of order r .  It will be 
seen that the suspensions's stability is controlled by pairs whose separation r z O(a),  
so that the aforementioned approximation is valid for particle density perturbations 
whose wavenumbers satisfy k-l % a. The criterion k-l 9 a is also necessary for the 
validity of our treatment of the pair concentration c2 as a continuum variable. 

In the presence of such slowly varying fluid velocity disturbances, the velocity U 
of the pair's centre of mass is simply the sum of the average fluid velocity ( u )  and 
the sedimentation velocity U o  of the pair in a quiescent fluid. This sedimentation 
velocity is given by: 

r .  Us 
r2 Uo = FUs+Gr-,  (4.2) 

where F + G and F are inverse resistance coefficients for the motion of two identical 
particles parallel and perpendicular to their line of centres, respectively (Batchelor 
1972; Stimson & Jeffery 1926; Goldman, Cox & Brenner 1966). F and G are functions 
of r and are always positive. 

The relative velocity of a pair in the presence of a velocity disturbance for which 
k-l 9 a is the same as that of a pair of neutrally buoyant spheres in a linear shear 
field. This relative velocity is (Batchelor & Green 1972) : 

(4.3a) 

where 
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A and B are positive functions of r tabulated by Batchelor & Green (1972), and 
A > B for all r .  Another useful relation is 

where W = r(ct.l/dr)+2(A-B) is tabulated by Batchelor (1977) and is always 
positive. 

To calculate the average fluid velocity field used in (4.3) and (4.4), we shall use a 
point-particle approximation, which is valid when k-l B a so that most of the 
particles causing the fluid velocity disturbance a t  x are a large distance away from 
the pair. Taking the unconditional ensemble average of (3.3) and (3.2b) gives: 

-pV*(u)  +V(p) = - dr[c,(x++r,r)+c,(x-+, r)-2n2SZ(r)], (4.5a) 

V*(u) = 0. (4.5b) 

Provided that the wavelength of the instability is sufficiently long, i.e. k-' $- r ,  ( 4 . 5 ~ ~ )  
reduces to 

n "I 
-pV2(u)  + V(p) x dr[c,(x, r) -n2SZ(r)]. 

n 

In ( 4 . 5 ~ )  and (4.6), Q(r)  is the pair distribution function averaged over the volume 
of the system, and SZ(r) has been normalized such that SZ --t 1 as r + co. 

The base state for our stability analysis is a homogeneous suspension, for which the 
pair concentration is cz(x, r) = n252(r). This spatially homogeneous particle density 
drives no average velocity in (4.6), so that ( u )  = 0. Because there is no average 
velocity, the relative velocity t is zero, and the pair conservation equation (4.1) is 
satisfied by this base state. 

We consider a normal-mode pair concentration perturbation of small amplitude 6,  

i.e. 
(4.7) 

The suspension will be unstable if there are perturbations for which the frequency w 
has a negative imaginary part. 

c2(x, r, t )  = n2[[s2(r) + @k, w ,  r) eiwt eik.x]. 

The pair density perturbation drives a small fluid velocity : 

(4.8a) ( u )  = 6n2ur e iwt  eik.x. 

Substituting (4.8a) and (4.7) into (4.6) gives: 

(4.8b) 

This small fluid velocity in turn induces a small relative velocity between the pair of 
particles 

where f' is simply given by (4.3) with V(u) replaced by ku'. 

using the continuity equation (4.5 b) ,  we obtain 

, (4.9) p = sn2f' e iwt  eik.x 

Substituting (4.7), (4.8) and (4.9) into the pair conservation equation (4.1) and 

&ot e ik.x [ioc; + i Uo-  kci + V, - (f'n2Q)3 

= - €Zn4[v. (e2iwt e2ik.x I u c p )  + V, * (eZiwt e2ik'xf'~;)]. (4.10) 



The instability of a dispersion of sedimenting spheroids 537 

The linear stability problem is obtained by neglecting the terms of order e2, which 
appear on the right-hand side of (4.10). This stability problem is similar to that for 
a sedimenting suspension of spheroids treated in $3, the distinction being that here 
the pair concentration, relative velocity, etc. replaces the spheroid concentration, 
rotational velocity, etc. Here, the stability problem involves a coupling between the 
pair concentration and fluid velocity fluctuations. 

We shall consider the base state in which the suspension is random, i.e. the pair 
distribution function Q(r) = 1 for all r 2 2a independent of relative position. 
Substituting (4.2), (4.4) and (4.8) into (4.10), and neglecting the terms of O(e2) ,  we 
obtain the following integral equation for the pair concentration perturbation : 

(iw + ik - U o )  c; +-a in2 W r .  r .  ki (slk -y) fk /dr c; = 0. 
2pk2 r2  

(4.11) 

This stability analysis like the similar analysis in $3 involves no dissipative 
mechanism and again we obtain a finite number (two) of discrete eigenvalues plus a 
continuous spectrum. By a procedure analogous to that described in $3, we find the 
continuous spectrum of eigenfunctions and eigenvalues to be : 

n2BW a h i  r . r .  8. -~ ' j  kk 
c; = A6(r-ro)+ 2pk2(w+ Uo.k) r2 ( lk k2 ) f k l  

for all w = -k.  Uo(ro) ,  (4.12a, b )  

where the constant A is determined from the normalization condition J dr c; = B(k). 
The second term on the right-hand side of (4.12a) is a generalized function and its 
integral with respect to r is defined to be the Cauchy principal value (Lighthill 1980). 
The continuous spectrum of eigenvalues are real, corresponding to travelling waves 
of constant amplitude with wave speeds equal to the sedimentation velocity Uo(r,) 
of a pair of spheres with relative position ro. 

The discrete eigenfunctions are of the form (cf. $3) : 

(4.13) 

and the dispersion relation for w obtained by substituting (4.13) into (4.11) is: 

r r  k k  
nZW a h i  8 -2 f k = O .  

dr2pk2(w+ UO-k) r2 ( k2 ) (4.14) 

We now define k3/k = cos 0, ri ki/rk = cos O', and 

r 3 / r  = cos 0 cos 0' +sin 0 sin 0' cos #, 
where r3 and k ,  are the components of r and k in the direction of the gravitational 
acceleration. When w is not part of the continuous spectrum of eigenvalues, i.e. 
w =!= -k. Uo(r)  for all r, the integral with respect to 4 in (4.14) may be evaluated by 
contour integration over the unit circle in the complex plane to obtain 
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Equation (4.15) can be written in terms of dimensionless variables as 
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where (4.17 a )  

(4.17b) 

r* = r /a ,  (4.17~) 

and 5 = cos 0'. (4.17d) 

Note that the wavenumber k* is non-dimensionalized with the reciprocal of the 
O(a4-l)  wavelength a t  which buoyancy forces associated with changes in the pair 
concentration balance viscous forces, and the frequency w* is non-dimensionalized 
with the reciprocal of the O ( U $ - ~ ( U ~ ) - ' )  time required for a pair of particles to fall 
through this length. 

The crucial difference between the expression (4.16) for the eigenvalues in the 
stability analysis for a suspension of spheres and the analogous expression (3.15) in 
the spheroids stability analysis is the difference in sign of the second terms on the 
right-hand sides of these two expressions. This distinction has the consequence that, 
while the eigenvalues are complex and the suspension unstable in the spheroids case, 
the eigenvalues are real and the suspension stable in the present case of spherical 
particles. The aforementioned sign difference results from the fact that the 
orientation space dilatation of the spheroid's rotation rate is negative in the 
extensional quadrant and positive in the compressional quadrant (cf. (2.4)), while the 
dilatation of the relative velocity of the pair of spheres is positive in the extensional 
quadrant and negative in the compressional quadrant (cf. (4.4)). 
A physical understanding of the difference in the stability of the two types of 

suspension may be gained by comparing figures 3 and 4. In both cases the density 
differences resulting from a normal-mode perturbation in the number density of 
particles drives a spatially oscillating shear flow. The spheroidal particles in figure 3 
tend to align in the extensional quadrant of the shear field with the consequence that 
they translate in the direction of increasing number density, making the suspension 
unstable. However, the preferred orientation for pairs of spheres is in the 
compressional quadrant, so they tend to  migrate towards regions of low particle 
density, making the suspension stable, cf. figure 4. As noted above there is no 
dissipative mechanism, so the suspension is only neutrally stable. 

The simplest case is that of 'horizontal' waves, i.e. perturbations whose 
wavenumber is perpendicular to gravity. In  this case, 0 = in and (4.16) reduces to 

There are two solutions w* of (4.18) for each value of k* and both solutions are real. 
If w* is a solution of (4.18) so is its negative, - w * .  The positive eigenvalue is plotted 
as a function of k* in figure 5. 
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Low particle High particle 
density density 

FIGURE 4. Schematic illustration of the mechanism leading to stability in a suspension of spheres. 
A normal mode perturbation with horizontal wavenumber drives a vertical shear flow. The 
streamlines of the extensional component of the local, linear shear field are illustrated. The flow 
field tends to increase the pair density for relative positions in the ‘compressional ’ quadrant - the 
quadrant consisting of relative positions whose projection into the plane of shear are within an 
angle in of the compressional axis. Pairs with such relative positions sediment with a horizontal 
component in the direction of decreasing particle density, leading to stability of the homogeneous 
suspension. 

0.201 I I I 1 I I 

0 1 2 3 4 . 5 6  
k* 

FIGURE 5. The positive, non-dimensional eigenvalue o* is plotted as a function of the 
non-dimensional wavenumber k* for horizontal waves, i.e. 0 = in. The negative eigenvalue is 
simply the negative of the eigenvalue plotted. The eigenvalues for negative k* are given by 
o * ( - k * )  = -w*(k*) .  The asymptotes are o*+O.2312 as k*+O and w*/k*+0.08507 as k * + c ~ ,  
cf. (4.19) and (4.20). 

The possibility of complex eigenvalues for horizontal waves, 0 = in, can be 
excluded by the following argument. If o* is purely imaginary, then the second term 
in the integrand in (4.18) is always real and greater than -1 .  As a result the 
integrand and the integral are positive and no equality is possible. Thus, there are no 
purely imaginary eigenvalues. The only other alternative is that w* has non-zero real 
and imaginary parts. In this case, ( k * / o * ) 2  is complex and the integrand is complex. 
Thus, the equality in (4.18) can only be satisfied if the imaginary contributions to the 

I8 FLM 209 
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FIGURE 6. The non-dimensional eigenvalues w* are plotted as a function of non-dimensional 
wavenumber k* for the case where the angle between the wavenumber vector and the direction of 
gravity is 8 = in. The eigenvalues for negative values of k* are given by w * (  - k*) = -w*(k*) .  
The asymptotes for the eigenvalues are w*+f0.2005 as k * + 0 ,  and w * / k * + - 0 . 5  and 
w*/k*  +-0.8175 as k* + 03, cf. (4.19) and (4.20). 

integral corresponding to different points in the range of integration cancel. Consider, 
first, the case in which (k*/w*)2 is the upper half plane. The quantity 
1 - k*2G2[2(1 - [2 ) ) /w*2  is then in the lower half plane for all r and 5. The denominator 
of the second term is also always in the lower half plane since the branch cut for the 
square root is along the negative real axis. Thus, this second term is always in the 
upper plane and all the imaginary contributions to the integral are positive. Thus, 
the equality in (4.18) cannot hold for any value of ( k * / u * ) 2  with a positive real part. 
An analogous argument can be used to preclude the possibility of a solution for 
( k * / ~ * ) ~  with a negative real part. This completes the proof that all the eigenvalues 
are real. 

Although it  is not straightforward to extend this simple argument to the case of 
non-horizontal waves, 0 =i= iz, we believe that there are again only real solutions in 
the latter case. To test this supposition, we have computed the eigenvalues for the 
case 0 = $7~. The two eigenvalues, which are real but, unlike those for horizontal 
waves, are not negatives of one another, are plotted in figure 6. 

The asymptotic behaviour of the eigenvalues in the limit of small wavenumber 
may be found by expanding the integrand in (4.16) to give 

o* x -kk( 1 ~ ~ r 2 W G d r ~ s i n 0 + O ( k * )  x f0.2312sinQ+O(k*) (k* 4 1) .  
( 1 5 ) ~  

(4.19) 

For every value of 0, there is a finite range of the real k*/w* axis over which there 
are no eigensolutions, because in this range the integrand in (4.16) is singular for 
some rand t. The large k* asymptotes of the eigenvalues correspond to the endpoints 
of this range. These asymptotes may be found after considerable algebra to be : 

- (2F, + G,) cos 0- G ,  
x (K* + a), 

k* 
O* 
- 

2F,(F, + G,) cos2 0 - iGL sin2 0 
(4.20a) 
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-COS@ (k*+ CO),  (4.20b) 1 - (2F, + G,) cos 0 + G, 
- x max 
w* W,(F, + G,) cos2 0 -$Gk sin2 0 ’ 

where F, = F ( 2 )  and G ,  = G ( 2 )  are the maximum values of the functions F and G. 
Thus, we have found only real eigenvalues in the stability analysis for a suspension 

of spheres, indicating that such a suspension is neutrally stable to particle number 
density perturbations. 

5. Conclusions 
In this paper we have examined the effects of hydrodynamic interactions between 

non-spherical axisymmetric particles with fore-aft, symmetry on the structure of a 
sedimenting suspension. As noted in $1,  many system properties, such as the mean 
and variance of the particle velocity and the particle diffusivity depend on the size 
of the sedimenting system in a random suspension with uniform probability. 
Therefore, it  of interest to examine the structure of an actual sedimenting suspension. 
In particular one would like to know whether structural effects allow one to 
determine the aforementioned system properties without reference to the macroscale 
dimension of the system. 

In $2, we found that interactions between spheroidal particles in a homogeneous 
suspension lead to an increase in the number density of neighbouring particles over 
a large lengthscale. This tendency for particles to agglomerate suggests that a 
homogeneous suspension is unstable to particle density perturbations. In  $3  we 
confirmed via a linear stability analysis that such a suspension is indeed unstable. 
Unfortunately, as a result, one cannot hope to calculate the properties of a 
sedimenting suspension of spheroids based on the assumption of statistical 
homogeneity. The possibility of a similar instability occurring in a suspension of 
spheres was precluded by the stability analysis in $4. 

From the analysis presented in $3,  we expect the convective motions associated 
with the instability to occur on lengthscales of order (nZ)-i. As the number density 
increases it follows that the expected wavelength of the instability will decrease so 
that in a non-dilute suspension this wavelength would be of the same order as the 
particle size and the convective motion associated with the instability would be 
difficult to distinguish from the random motion of the particles. Thus, in order to 
observe this instability most easily, one should examine dilute sedimenting 
suspensions. 

There is currently some interest in numerical simulations of sedimenting 
suspensions (cf. Brady & Durlofsky 1988). Our prediction of convective motions on 
a lengthscale (nZ)-i implies that in order to simulate accurately the dynamics of a 
three-dimensional, dilute sedimenting suspension of non-spherical particles one 
needs a ‘box’ whose linear dimension is much larger than (nZ)-$ or, alternatively, a 
number N of particles that is large compared to (nZ3)-i. It follows that the number of 
particles required to accurately simulate the sedimentation process will increase with 
decreasing number density. 

It should be noted that the fastest growing wavelength (nZ)-i of the instability will 
be, in general, much smaller than the size of the sedimenting system. The primary 
difficulty in observing this instability lies in diffemntiating the random convective 
motion associated with the instability, which occurs on lengths of O((nZ)-$, from the 
random motion of individual particles. However, there are a number of observations, 
which may be made relatively easily and yet indicate the existence of the instability. 

10-2 
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For instance, the convective motion may lead to an average sedimentation velocity 
which is larger than the maximum possible value for a particle in a quiescent fluid. 
Thus, accurate measurement of the sedimentation velocity may indicate the 
presence of this instability. The presence of the convective motion may also be 
confirmed by comparing measurements of the sedimenting particles’ velocity 
variance in a dilute suspension with scalings based on the magnitude of the 
convective motion associated with particle density variations on the lengthscale 
(&. 
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